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Machine learning and privacy

Lecturer: Dr. Ana-Maria Cretu

Slides’ derivation chain:
Ana-Maria Cretu <- [Dario, Pasquini, Carmela Troncoso] <-> [Rebekah Overdorf, Bogdan Kulynych and
Theresa Stadler]



Objectives

“Machine learning (ML) and privacy” is an extremely active and dynamic line of
research; fresh results every month!

o Historically, there has been a focus on predictive Al, i.e., classification models.

o More recently, the focus has shifted to generative Al: large language models (LLM),
diffusion models...

- This lecture focuses on the fundamental concepts. You will learn how to:
o Think adversarially about ML in two widely used settings, centralized ML and federated ML.
o Train ML models in a privacy-preserving way.



| ecture overview

* What can we learn from machine learning models? (focus on deep learning)
* Centralized machine learning (50%)
* Collaborative machine learning (50%)

* Learning on private data
* How can we responsibly use private data?



Part | — Centralized ML



Useful ML background

- We want to train a model to infer a label Y given a feature vector X for a distribution
(X,Y) over D*. E.g., infer a user’s pet given their social network profile.

o D" iIs the universe of possible samples. E.g., all social network profiles and the owners’
pets.

A training dataset D = {(xq,y1), ..., (x5, ¥»)} consists of n samples of (X,Y). Each
label denotes one of C classes.

« At train time: We train a model on D.

Test/inference time: We use the model to make predictions on new inputs x.

Given x, we retrieve the model’s confidences on each class, M(x) = (¥4, Vo, ..., V¢),

Y.; Vi = 1. These are the probabilities the model assigns to the event “x belongs to

the i-th class”. We predict j such that j; = max ;.
l

9, = 0.40
$,=0.18
9, = 0.24
9, = 0.18




How to get a model from the data?

By applying a training algorithm T to the training dataset D: M = T (D, seed).
o Model architecture (e.g., neural network)
o Objective (loss) function.

The model is specified by its architecture and trained parameters 0 (also called
weights): M = M(6)

Model predictions on inputs x: M(x) = M(x; 6)



Stochastic gradient descent (SGD)

Example: neural network classifier.

Training process (mini-batch SGD):

2.

3.

Randomly initialize the weights 6, « random.
Fortin{0,1,..,n—1}:
1.

Sample batch from the training set:
(x1,¥1)s -, (xg, yg) ~ D

Compute model’s prediction (confidence score):

ﬁ = M(xb; et),b =1,..B
Compute the loss:

B
1N
16 =% ) L)
b=1

Compute gradient:
gt — Vetl
Update parameters:
Orr1 =0 — N8y

D: training dataset

b: batch size

M (6): model parameterized by 6
L: loss function

n: learning rate

n: number of training steps

Loss

Source: https://www.ibm.com/think/topics/gradient-descent

Small learning rate Large learning rate

Loss

Value of weight Value of weight


https://www.ibm.com/think/topics/gradient-descent

Machine learning — Life cycle

Task design: Define the objective of the model.

Data collection: Collect a dataset for training the model.

Train the model: Fit a model to the dataset, by applying a training algorithm.

Deploy: Make the model available to someone else (e.g., via APIs or weight sharing).

W e



Machine learning — Life cycle

Task design: Define the objective of the model.

Data collection: Collect a dataset for training the model.

Train the model: Fit a model to the dataset, by applying a training algorithm.

Deploy: Make the model available to someone else (e.g., via APIs or weight sharing).

W e

This is where the privacy problems start!



Machine learning privacy concerns

Our main concern is the confidentiality of the training set. Why?

w Training data may be sensitive!
¢ Training data is expensive to collect.

Training phase:

Training sample:

Conversation A

| Hi Alice how are things
going?
- -

Alice

‘ No I'm sorry to hear that!

Model

Deployment phase:

Alice did
what!?

| What are you going to do ‘
about custody of the kids?
B

ob

oo

10



Objectives of privacy attacks

An adversary can target information about:

1. Individuals who contributed to the training data
* Is asample (person, image,...) in the training set? - Membership inference attack
« If so, what attributes does this sample has? = Attribute inference attack

« Can | extract training samples from the model 1? > Reconstruction/data
extraction attack

2. The dataset as a whole

 What is the proportion of women that this model was trained on? - Property
Inference attack

1Some models like Support Vector Machines or k-Nearest Neighbors encode (a subset of) their training samples. Recovering samples
from these models is straightforward given access to the parameters. In this lecture, we focus on deep neural networks trained using

SGD, where the problem is non-trivial. 11



Threat model

Black-box attack 4 White-box attack
« The adversary can query the model M on « The adversary has access to the trained
any valid input x of their choice, to retrieve model’s parameters 0, i.e., complete
the model confidences! for each class knowledge of how the model works.

M(x) = (}71»y2» ---;yc)» Ziyi = 1.

« Examples: Machine Learning as a Service . Examples: on-device releases and open-
(MLaaS) and models accessed through source models.
APIs.

things?

ik

variants of the black-box threat model include only releasing the predicted label arg max; ¥; and only releasing the top-k confidences.

Hi, how are



Machine Learning as a Service (MLaaS)

1. A company trains a
model in the cloud.



Machine Learning as a Service (MLaaS)

2. The company makes
this model available as a
service for users to query

1. A company trains a
model in the cloud.



Machine Learning as a Service (MLaaS)

2. The company makes

LA company rains & Training ML_model this model available as a
model in the cloud. : :

algorithm % service for users to query
N /

3. The user makes a query: “Given
Features Bob's profile (photos, posts, metadata),
what pet does Bob have?”

P
id

15



Model sharing

1. A hospital trains a

model to identify if a Patient-level __ ML model 2. The hospital shares this
patient is at risk of observations: 1|'ra|r_1t|;]1g %f © } model (i.e., its weights) to
COVID-19 complications ls[cE{=ls [e]3F aigorithm third parties.

based on their medical comorbidities %
iInformation.

16



Training data privacy: General intuitions

Although we want models to learn general “rules” for making predictions, they are
always trained on specific, finite datasets.

Because of how they are trained, models behave differently when applied to a
training sample compared to an unseen sample.

Privacy attacks are about characterizing and exploiting? this behavior to infer
information about the training dataset.

10r inducing them in the active security model.



Membership inference attack



Formal definition of an MIA

An adversary has access to:

o A target model M, trained on a private dataset D ¢ D*.

o Atargetrecord zt = (x7,yr), €.9., (Bob's profile, cat).
The adversary wants to know if M was trained on (xr, yr), i.e., whether (x;,yr) € D.
Member record: any (x,y) € D.

Non-member record: any (x,y) € D*\ D.



Black-box membership inference

Training
algorithm

Features
Is Bob a member or not?

20



Black-box membership inference: Intuition

|deally, we would like member and non-member samples to have the same confidence
distribution:

Features

Features

Non-member

Member

However, the reality is:

Features

Features

Non-member
21

Member




Overfitting

22



How to construct an MIA

« We want to exploit that a model predicts the label of member records more confidently
than the label of non-member records.

« This amounts to learning to distinguish between two distributions: the model confidences
for members vs non-members.



Option 1

- The attacker can train a classifier A to distinguish between model confidences of
member and non-members.

- The attacker can apply this classifier to the target record to obtain the membership
prediction A(x,y)
- Strong adversary assumptions:

« The adversary needs to Know D,,,ormper € D and Dy pnmemper © D* \ D. This is needed to train
the classifier on {(Mr(2),1):z = (x,¥) € Diemper} U {(M7(2),0):z = (x,¥) € Dnonmember}
- The adversary can query the model | D, emper| + | Dnonmemper| + 1 times.

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



Option 2 — Shadow modeling technigue

- Simulate the behavior of the model by training = shadow models

- The shadow models are trained using the same training algorithm T but on different
datasets which are controlled by the attacker.
« M, =T(Dq,seed,),.., M, =T(Dg,seedy) with corresponding member/non-member datasets
(D1; Dadv \ Dl)' ey (DK; Dadv \ DK)
« The adversary then trains a classifier to distinguish between members and non-members
based on confidence outputs of shadow models.

-  Weaker adversary assumptions:

« The adversary has a dataset D4, different from the one used to train the target model
(typically, from the same distribution)

- The adversary can query the model once for a given target example x; to obtain y = M (x)
« The adversary knows the training algorithm T

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against machine learning models. In
2017 IEEE symposium on security and privacy (SP) (pp. 3-18). IEEE.



Shadow modeling idea: illustration

Attacker-controlled dataset
D,4v, €.9., Internet images

26



Shadow modeling idea: illustration

Shadow dataset D,
e

—_—

Attacker-controlled dataset
D,4v, €.9., Internet images




Shadow modeling idea: illustration

[ Shadow model M; ]

Shadow dataset D,
e

—_—

Attacker-controlled dataset
D,4v, €.9., Internet images




Shadow modeling idea: illustration

M,’s confidences
on samples in D,

M;’s confidences on
samplesin D,4, \ Dy

LL |

— MM'M

‘\/

[ Shadow model M; ]

Shadow dataset D,
e

—_—

Attacker-controlled dataset
D,4v, €.9., Internet images
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Shadow modeling idea: illustration

M,’s confidences
on samples in D,

M;’s confidences on
samplesin D,4, \ Dy

LL |

— MM'M

‘\/

[ Shadow model M; ]

Shadow dataset D,
e

My's confidences Myg’s confidences on

on samplesin Dy samplesin D4, \ Dg

LL |

— MM'M

‘\/

[ Shadow model My ]

Shadow dataset Dy

}//—

Attacker-controlled dataset
D,4v, €.9., Internet images
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Shadow modeling idea: illustration

M,’s confidences
on samples in D,

M;’s confidences on
samplesin D,4, \ Dy

LL |

— MM'M

‘\/

[ Shadow model M; ]

Shadow dataset D,
e

My's confidences Myg’s confidences on

on samplesin Dy samplesin D4, \ Dg

LL |

— MM'M

‘\/

[ Shadow model My ]

Shadow dataset Dy

}//—

Attacker-controlled dataset
D,4v, €.9., Internet images

Membership
classifier
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Shadow modeling idea: illustration

M,’s confidences
on samples in D,

M;’s confidences on
samplesin D,4, \ Dy

i

\/

[ Shadow model M; ]

Shadow dataset D,
e ——

My's confidences Myg’s confidences on

on samplesin Dy samplesin D4, \ Dg

I

— MMH

\/

[ Shadow model My

Shadow dataset Dy

}/’/—

Attacker-controlled dataset

D,4v, €.9., Internet images

Membership
classifier

Was Bob’s record
used to train M;?

32



Option 3: Threshold attack

- A simple attack with interesting theoretical insights.

- Even weaker adversary assumptions:
« No knowledge of the training algorithm and no access to the data distribution
« The only knowledge about the target model:
« The loss function L(-,-) used to train the model.

« The average training loss L* = % r L LMy (xp), yi)
- The adversary can query the model once for a given target example x; to obtain y = M (x)
- How to attack in this setting?



Relationship between model confidences and
loss function

Model confidences: Given x, the model’s confidences on each class is a vector
M(X) — (5;1;?2; ""yC)i Ziyi — 1

At train time, neural network’s weights on the cross-entropy loss:

L(x, y) — —lOg(yy)

where ), is the model's confidence on x’s true class, y



Threshold attack

ThresholdAttack(M, (x,y), L*, L(.)):
1. Query y = M(x)
2. Compute loss at target example L = L(¥,y)
3. Compare the target’s loss with average loss
If L < L*: predict “member”, i.e., that (x, y) was in the training dataset
else: predict “non-member’, i.e., that (x, y) was not in the training dataset

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE.



Estimating vulnerability with the threshold attack

Consider:
« A training dataset D whose loss distribution is shown — “[

In blue |
« A test dataset D' whose loss distribution is shown in 03

purple

The adversary knows _
 The average loss on the training setis L* = 6 o1l
* Prior probability of a sample being a memberis 0.5 '

How can we estimate the advantage (Adv =
P(success) - P(prior)) of the threshold attack over ' Y J
random guessing on all examples from D and D’? A0% of D’ 60% of D’




Estimating vulnerability with the threshold attack

How can we estimate the advantage (Adv =
P(success) - P(prior)) of the threshold attack over oA
random guessing on all examples from D and D’? '

» A: adversary guess, M. membership of sample

 P(prior)=P(M =1)=0.5 oaf
» P(success) = P(A=M) [
=P(A=1,M=1)+P(A=O,M=O) -:-.1:—

=PA=1M=1)XPM=1) +

P(A=0|M =0)xP(M = 0)
=05+x05+0.6*0.5=0.25+ 0.3 = 0.55.
« Adv =0.55—-0.5=0.05 ' '
« Adv can range between 0 and 0.5. We can multiply it 40% of D’ 60% of D’
by 2 to have it range between 0 and 1.
Adv=2P(A= M)-1=PA=1M=1)—-P(A=1|M = 0)
(adversary's TPR minus adversary's FPR)




Relationship to overfitting

Theorem (informal statement, Yeom et al., 2018): Assume the loss function is
bounded by a constant B. For a sample (x, y), the adversary who outputs 1 (member)
with probability L(y,y)/B and 0 otherwise has an advantage equal to R ., /B.

Average generalization error of training algorithm T
Rgen(T: n,L) = ED~(X,Y)",(x,y)~(X,Y) [L(T(D)(x); Y)] 3 ED~(X,Y)",(x,y)~D [L(T(D)(x); y)]

Expected loss over samples Expected loss over samples
(x,y) of the distribution (X,Y) (x,y) of the training dataset D

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to
overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE. 38



Lower bound on vulnerabillity

Overfitting implies vulnerability to membership inference attacks.

Practical estimation of the lower bound on vulnerability:

o The threshold attack is extremely simple and cheap: adversarial advantage
IS the difference between proportions of examples under loss threshold on
training/test datasets.

o Surprisingly, it is also rather powerful in practice.



Is overfitting necessary to obtain good
classifiers?

- Long-tailed data distribution: A distribution in
which the frequencies of sub-populations are
long-tailed, i.e., there are many sub-populations
with small frequencies.

o A dataset sampled from a long-tailed distribution

will have few samples available for every sub-
populations.

o Real-world examples: images, text,...

- Theorem [Feldman, 2019, informal statement]:
To achieve optimal performance, a model trained
on long-tailed data must memorize the labels of
sub-population samples in the training dataset.

500

Number of occurrences

Window Person ... Rope Spoon Locker ... Coffin ... Ziggurat

(a) The number of examples by object class in SUN dataset

Feldman, V. (2020, June). Does learning require memorization? a short tale about a long tail. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing (pp. 954-959).



White-box shadow modeling attacks

activations of internal layers,
gradients, weights...

+

I I I I
M,’s confidences M,;’s confidences on My's confidences My's confidences on
on samples in D; samplesin D4, \ D; on samples in D, samples in Dg4, \ Dx

I

1

[ Shadow model M, ] [ Shadow model My ]

LShadow dataset D, _I_J "t Shadow dataset Dy _I_J

e

Attacker-controlled dataset

Dgav, ©.9., Internet images |—

Membership
classifier

Was Bob’s record
used to train M, ?
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Attribute Inference attack

Threat model
o The attacker knows the partial record of an individual Bob. l.e., if Bob’s
record has n attributes x4, ..., x,, and label y, the attacker knows x' =
(xl; e Xn—1, y)
o The adversary’'s goal is to infer the missing attribute x,, given access to a
target model trained on (x, y).



Connection between attribute inference and
membership inference

* Imagine an ML model that takes medical
Information and returns a recommended
dosage of some medicine.

* Assume we have an AlA for inferring the “Has
disease” attribute. How can we use it to
construct an MIA?

® Use the AIA to query the model on Bob’s value for
“Has disease” given x'. If the attribute retrieved is Medicine
correct (i.e., the AlA returns “yes”), predict “member”. Features dosage
Else, predict “non-member”.

® Yeom et al. showed this MIA to have the same
advantage as the AlA. Sex | Age | Country | Has disease

* A reduction exists in the opposite direction, but
the advantage of the MIA-based AIA is smaller

M 55 Belgium | yes

than the MIA’s.

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to overfitting. In
2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE.



Summary

. ¥ The training process makes the model behave differently on training data.

. . An attacker can exploit this behavior to infer information about the training data.



Defending against MIAs using differential
privacy

Differential privacy (DP) is a mathematical framework to reason rigorously
about privacy.

So far, you've studied DP in the context of statistical queries.

The same ideas apply to ML algorithms, too!
o With some differences we’ll explore today

Key intuition: The outputs of the training algorithm should not “change too
much” regardless of the inclusion or exclusion of any one record



Differential privacy

Definition (e-Differential Privacy): Let € > 0. A randomized mechanism 7Is said

to satisfy e-differential privacy (or to be e-DP) if for every pair of neighboring
datasets D, D’ (i.e., differing in exactly one record) and for any subset of outputs Y,

the following holds:

Pr(T(D) €Y) < ePr(T(D") € Y)

where the randomness is taken over the coin flips of Y.

A

Average
salary (D)

Ratio bounded by e€ = 1 + €

Probability distribution

v

Possible output values

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006.



Achieving DP through noise addition

Noise addition is one of the key ingredients of DP mechanisms.
» Global sensitivity of the mechanism AT = max |IT(D) —T(D")]

« The global sensitivity captures how much a single individual’'s data can change the answer to the query Iin
the worst case, and therefore, the uncertainty in the response that we must introduce to hide anyone’s
participation.

« Theorem: Given a mechanism T, adding noise Lap (O, A?T) to a query ensures e-DP.

0.5

=T T=
TRTRT
nooo
T oToToToO
mnnnn

e N

04

—
1

0.3
0.2

0.1

0 éZ/ | -

-10 8 6 4 -2 0 2 4 6 8 10

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, TCC 2006.



Differentially private ML

X o
Training

. g algorithm >

@ (T)

[
P(T(X)=M

e-similar ( (X) ) —ef=~1+¢

P(T(X') = M)

Training
g algorithm >
(T)
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Differentially private ML
Loss minimisation

ML training

Define objective function
0" = argmin L(x,y;0)
6

Iterate for T epochs

N

v

@

Training data Trained model

Update model Calculate gradients
0rs1=6:—n-g g ="VelL(x,y; 6)

~_

(x,y) 9*

51



Differentially private ML

Technigues

ML training

Define objective function
0* = argmin L(x,y;0) + [+
6

Training data
(x,¥)

Iterate for T epochs

Objective perturbation

-

N

Update model
Or+1 = 0¢ —

Calculate gradients
g =VelL(x,y; 8) +

S ]

Trained model
8"+ [

/

Output perturbation

Gradient perturbation

52



Differentially private ML
Technigues

ML training Objective perturbation

Define objective function /

0 = argmin L(x,y;0) + f~—t— |
6

R Iterate for T epochs .

N

Traini : Trained model
ra|r(1j|cng}g,)data Update model Calculate gradients 0" +
’ Oir1 =60:—1n-g g =VelL(x,y; 8) + /

\_/ Output perturbation

How much can a single training record affect each of these functions?

53



Differentially private ML
Technigues

ML training Objective perturbation

Define objective function ? /

0 = argmin L(x,y;0) + f~—t— |
o

R Iterate for T epochs .

N

Training data : Trained model
A (ch ?1) Update model Calculate gradients 0* +
' Ors1 =6: =1 g g =Vellx,y; 6) + 5 7 ?

\_/ Output perturbation

How much can a single training record affect each of these functions?

We do not know how to calculate a bound on the sensitivity



Differentially private ML
Technigues

ML training

Define objective function
0* = argmin L(x,y;0) + [
6

Iterate for T epochs

N

v

@

Training data Trained model

Update model Calculate gradients
Orr1=0¢ — g =Vel(x,y;0) +

\_/ ]

Gradient perturbation

) 6" +p

55



Differentially private ML
Differentially private stochastic gradient descent (DP-SGD)

ML training

Define objective function
0* = argmin L(x,y;6)
6

~

—

U —> —>

— lterate for T epochs

Training data /’ _\‘ € — DP model fy
(x,¥)
Update model Calculate gradients
Oev1 =60 —1- g g ="VgL(x,y;0)
\ Gradient perturbation ,/
9 =pe(9)

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318). 56



Differentially private ML

DP-SGD

L

Training data
(x,y)

ML training

Define objective function
0* = argmin L(x,y;6)
6

|

Iterate for T epochs

—=

==

Update model
Ore1 =60t —1-9g

g = VQL(X

Calculate gradients

;0)

\ Gradient perturbation f

9 =1(9)

Gradient perturbation:

1. Gradient clipping (bound sensitivity):
C
1)

gc = g X min(

gl

2

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).

DP parameters:

C is the imposed sensitivity

o is a function of €

N is the isotropic gaussian dist.

57



A bound to gradient sensitivity:

* The gradient does not have a fixed range (i.e., it ranges between [—oo, +00]).

« What we need Is:

For every pair of neighbor batches:

~

> “ZxExa VQL(MQ(X),)/) _ZxExb VQL(MQ(X),)I)”Z <C

58



Differentially private ML

DP-SGD

L

Training data
(x,¥)

ML training

Define objective function
0* = argmin L(x,y;6)
6

|

Iterate for T epochs

—=

==

Update model
01 =60t—1m-g

g = VQL(X

Calculate gradients

;0)

A\ Gradient perturbation j/

9 =1(9)

Gradient perturbation:

1. Gradient clipping (bound sensitivity):
C

Jdc = g X min( ,1)
|lgl],
2. Noise sampling based on sensitivity and e:
d = N(0,0%C?)
3. Noise application:
9 =gct+d

DP parameters:

C is the imposed sensitivity
o is a function of €

N is the gaussian distribution

59



DP-SGD In detalls

Input batch: Per-instance gradient: Clip: sum: Apply noise:

—VoL(fp (x1),y1) ——C(...) \

—'VQL(]:Q (Xz),yz)—>C(...) — Z —>+N(O,O'2C2)

| ——VoL(fy (x3),y3) —c(...) /

v
Scale by %
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Differentially private ML
DP-SGD

Naive composition:
If each iteration is € —DP

Define objective function By composition, final model is Te — DP
0* = argmin L(x,y;6)

ML training

We end up consuming too much budget

C— i
— | -
[S— Iterate for T epochs
Training data /’ '\‘ Trained model
(x,¥) 6"
Update model Calculate gradients
Orr1 = 0 — g =VeL(x,y; ) +
’\/ /
S

Gradient perturbation

61



Differentially private ML

DP-SGD

L

Training data
(x,y)

ML training

Define objective function
0* = argmin L(x,y;6)
6

|

Iterate for T epochs

N

Update model
Ori1 = 0¢ —

Calculate gradients
g - VHL(x Y, 9) +:8

’\/ /

Naive composition:
If each iteration is € —DP
By composition, final model is Te — DP

We end up consuming too much budget
Q

Trained model
H*

Advanced composition:
If each iteration is € —DP

Gradient perturbation /

By advanced composition, final model is

(0(VTe),8) —

We need to add less noise in each iteration
to get the same total epsilon at the end

62



Differentially private ML
Advanced composition

Naive composition: Advanced composition:

If each iteration is € —DP If each iteration is € —DP

By composition, final model is By advanced composition, final model is
Te — DP (0(VTe),8) — DP

\/‘

We “gain” a factor VT

63



Differentially private ML
Advanced composition

Naive composition: Advanced composition:
If each iteration is € —DP If each iteration is € —DP
By composition, final model is By advanced composition, final model is
Ts—m'\ (0(VTe), ﬁ\l&
We “gain” a factor /T At the cost of introducing a failure rate

Whatis the 6 in (¢,6) — DP?

64



Differentially private ML
Advanced composition

Naive composition: € — DP

N

P[A(D) = 0]

Ratio of the two probabilities
is bounded by e®

v

0 =25

For any neighbouring databases D, D_,. and
any possible output O

P(A(D) = 0) < e€P(A(D_,) = 0)
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Differentially private ML
Advanced composition

Naive composition: € — DP Advanced composition: (g,6) — DP

A & eSP[A(D_,) = O]
P[A(D) = 0]

Ratio of the two probabilities

Ratio of the two probabilities is
is bounded by e®

no longer strictly bounded by e®

P[A(D]
0 =25 . 0 =25 -
For any neighbouring databases D, D_, and For any neighbouring databases D, D_, and any
any possible output O: possible output 0

P(A(D) = 0) = eP(A(D-;) = 0) P(A(D) = 0) < e°P(A(D_,;) =0) +§
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Differentially private ML
Advanced composition

Naive composition: € — DP Advanced composition: (g,6) — DP

A & eSP[A(D_,) = O]
P[A(D) = 0]

Ratio of the two probabilities

_ Gap between the two
is bounded by e®

probabilities is bounded by ¢

P[A(D]
0 =25 . 0 =25 -
For any neighbouring databases D, D_, and For any neighbouring databases D, D_, and any
any possible output O: possible output 0

P(A(D) = 0) = eP(A(D-;) = 0) P(A(D) = 0) < e°P(A(D_,;) =0) +§
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Upper bound on vulnerability

DP training provides a simple bound on vulnerability to membership inference.
With e —DP training, the maximum advantage is bounded:
Why? Noise addition acts as a regularizer to reduce overfitting.

" 1.01 ... Yeom et al. (Eq. 3) _-':
& 0.8 Erlingsson et al. (Eq. 4)
§ | —— Tighter bound (Eq. 5) \
2 0.6- \ ©
g ; —
: Adv <&
G 0. e€ +1
@
D
£ 0.2 1
@
=

0.0 e— o I

10-2 107! 10° 10*

£

Humphries, T., Oya, S., Tulloch, L., Rafuse, M., Goldberg, I., Hengartner, U., & Kerschbaum, F. (2023, July). Investigating membership

inference attacks under data dependencies. In 2023 IEEE 36th Computer Security Foundations Symposium (CSF) (pp. 473-488). IEEE.
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Differentially private ML

Adversarial evaluation

-- Model trained with e — DP

-- Model trained with (g,8) — DP

100 | : 1,00
T !AJ‘,T"V
Compare test accuracy to N Naive Composition (NC) %
non-private model B 075 Theoretical | 075 O)
0o Guarantee , ©
-l § =
; 8
> '
O 050 ; 0.50 =l
o ' >
= ‘ (3]
Q / o
0 ; =
< 0% ; 025 "&
B mmmmna o oo o
'p,
- e ki
0.00 8=eea P, D S @mzz==8 0 . O e O = mm== Rewsen . 0.00
0.01 0.05 0.1 0.5 1 5 10 50 100 1000

Privacy Budget €

Under advanced composition we add less noise.

This improves utility but can lead to more actual privacy leakage.

= Privacy does not come for free

Neural Network on
CIFAR-100

Jayaraman, B., & Evans, D. (2019). Evaluating differentially private machine learning in practice. In 28th USENIX Security Symposium

(USENIX Security 19) (pp. 1895-1912).

Measured as attack accuracy
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Differentially private ML

* Three ways to apply differential privacy to ML models
* Objective perturbation
* Qutput perturbation
* Gradient perturbation

* For complex learning tasks (deep learning), we cannot derive sensitivity bounds for
the objective and output and have to use gradient perturbation

* Naive (linear) composition is too punishing for iterative learning algorithms

* Advanced composition gives better budget consumption at the cost of introducing a
failure rate

* Privacy does not come for free: Adding less noise improves accuracy but decreases
protection against attacks

* *Differential privacy does not protect against property inference attacks



Part Il - Collaborative Machine Learning (CML)



Federated Learning (as example of CML)
Setup

Clients

oI
CIEn
———

Central server

72



Federated learning (FL)
Example: Federated SGD

Or1 =0 —nXg

g N g > % New global model

o

I §
% Central server

1
Ot g ==V, L(Mg,(xa),¥a) + vetL(Met(xg),yB)]

Model updates aggregation (gradient avg):

2



Federated learning
Adversarial model

Adversarial Client, whose goal is to learn about
/ the training datasets of other clients.

Clients w
Model updates

é Adversarial Server, whose goal is to
% learn about the training datasets of clients.

B o=@
o
@ — — % @ Global model

Central server

5. %

Training data considered sensitive »



New attack vectors In FL: adversarial server

« The server gets access to users’

Bob
individual model updates (i.e., gradient): @ Q %
d K ~ » VgtL(Met(xA);yA) %
Bobs Alice’s

« The server can perform MIAs on the % %
specific user (e.g., Alice) [Nasr SP19] _._

Central server

« But, with the gradient, the server can do %

much worse: @ Gradient inversion

attacks @
Alice

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



Gradient inversion (honest-but-curious server):

oY)
VoL(Mp (ED. ) » Smm = [}

A second order optimization: The adversary optimizes the synthetic data until they
obtain a gradient close to the one received from the client:

argming ;[d ( VQL(y, Mg (x)), VQL()?', Mg (56))) -reg(X)]

| S \

Synthetic data Gradient from the client Domain specific regularizer

Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients. Advances in neural information processing systems, 32. 76



Gradient inversion in-the-wild:

zx,y

Iters=100 Iters=500 | Ground Truth
s

Iters=0 Iters=10

~S
LAr
=
.{f“.ﬂ).
o
o
_'.ﬂ: o
>k ",1{\-
T e s »f.'.",f,«',"',‘- P
LA Ty NEER A > Wik 7
b | 3 — 4 - R
. o g =
I‘\ .
»
) Ty

] L\

Limitations:

It really works only for small batch sizes and simple models.

bt i PO R T ek

BIETVE-H&
R ESE D
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Gradient inversion (malicious server &)

Bob The server crafts adversarial parameters:
+ ‘Trap weights’ that force the gradient
@ - Q ® produced by users to memorize input data:

Central server

&
-

y = ReLU(Wx + b) = max(0, Wx + b)

g % If w/x + b; > 0, then for a batch size of 1 the
) (0o) following holds: . or

Alice X = (_aﬁ)_l T
Boenisch, F. et al. When the curious abandon honesty: Federated learning is not private. In 2023 Euro S&P. 78
Fowl, L. et al. Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models. In ICLR 2021.




Gradient inversion with malicious server &)

(Some) of the input instances can be perfectly recovered. ResNet-18, batch size n =100:

’
> ’
“
. 7 e
o
#

(a) Reconstructed data points.

EpEaHeRESE
JERENEE - N2
B N s I
«EEFSEF=EI
o I 5 20 i
5 o s
' 5 T .
" TEPTE e
SHdlaRRT =D
BRSO ba -

(b) Original data points.

For more details: http://www.cleverhans.io/2022/04/17/fl-privacy.html
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http://www.cleverhans.io/2022/04/17/fl-privacy.html

What about malicious clients & ?

At the next iteration, Bob computes his
model update on the model influenced

Bob %/ by Alice.

=% 8%
®

Malicious user crafts adversarial update @ Central server

and influences the global model @/
]

Alice 80



The gradient ascent trick for MIAS

==
Honest execution: (v

Gradient descent: we change 6 to minimize the loss for x
VQL(MQ (X), y)

Instead, the malicious user goes with:

Gradient ascent: we change 0 to maximize the loss for x
nice: & —VoL(Mp(x),¥)

N\

MIA’s target instance

X Lo

v
loss
—>

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box 31
inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



The gradient ascent trick for MIAS

Alice: @ —Vo,L(y, My, (K 8) ) Bob: @") Vo, L (J’; M9t+1(,{))

_ Large gap
means membership

L oa
v X

Small/no gap

loss
v
loss

Results: :
means non-membershi
Target Model Local Attacker (a participant) p
Passive Active
Dataset Architecture Gradient Ascent

CIFARI100 Alexnet 73.1% 76.3%
CIFAR100 DenseNet 72.2% 76.7%
Texas100 Fully Connected | 62.4% 66.4%
Purchase100 | Fully Connected | 65.8% 69.8%

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box

82
inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



Federated learning
Defenses

Clients

@%Q\

Option 1: Encrypt

ﬁ ? % Global model

Central server

%%43/

Model updates
Option 2: Differentially private learning 83




Achieving DP In FL

Three main approaches with different assumptions and impacts:

1. Local differential privacy
2. Central (global) differential privacy
3. Distributed differential privacy



Local differential privacy

Threat model: Clients

& Malicious server

& Malicious users g g
-

M Weakest assumptions (no trust)

& Worst utility loss

_ _ Every model update
(instance-level privacy) shared by users is € — DP

User performs
DP-SGD locally

s 4

£3

CEEID)
XN
_.I_

Central Server
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Central differential privacy

Threat model: Clients

& Honest server The server applies the DP-noise
@ Malicious users [g after the aggregation
B

¥ Strongest assumptions

A Better utility loss g
(compared to local DP)

Model updates are w g
I 9
AN

(user-level privacy) shared in plaintext. .
g Central Server( ™

Used in the real-world
(gboard by google):

V g

g o =

86



Instance-level vs user-level DP

Implies

Instance-level: P User-level:
Given the model, the attacker Given the model, the attacker
cannot tell if an instance (e.g., cannot tell if a user participated in
an image) has been used for the training.

training it.



Instance-level

Input batch: Per-instance gradient: Clip: Sum: Apply noise:

,' ” —>V9L(M9(x1);)’1) —>C() \

—VoL(Mg (x2),¥2) ——C(...) — ), ——+N(0,02C?)

—VgL(My (x3)»}’3)—>C(... ) /

Scale: —
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User-level

Input gradient: Clip: Sum: Apply noise:

—C(...) \

Alice's ve(%biL(yAuce,b,yAuce,b)) —»C() — Z —— +N(0,0%C?)

B
, 1w
Bob's Ve(E; L5050 Voob))

B
I | 1 ~ /
KeV|n S VG (Ebzl L(yKevin,brYKevin,b)) —'C( TR )

Scale: —



Local DP (as instance-level DP) assumptions

Parameter Server:

Instances in the batch should not be

correlated:
* |f every instance in the batch is about Bob.
 Instance-level DP does not protect Bob’s identity.

i

Alice: VoL(Mg(x),y) + noise  Boh: [Me] Vo(Mgy(x),y) + noise

90




Summing up

Instance-level DP (as local DP):

 Less trust: No trusted curator

« Additional assumptions: intra-batch data is not correlated
« Worse trade-off privacy/utility

User level-DP (as global DP):

* More trust: A trusted curator

« No assumptions on intra-batch data
« Better trade-off privacy / utility
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Distributed Differential privacy

But only the sum is
Threat model. @ revealed to the server
& Malicious* server % D E—
¢ Honest-but-curious users
# Reasonable assumptions g
# Almost equivalent to central-DP

X
Secure g _, XS
Aggregation (g0 )

a fraction of the noise ——  —

(user-level privacy) &

Every user applies only

Central Server

- o *

Kairouz, P., Liu, Z., & Steinke, T. (2021, July). The distributed discrete gaussian mechanism for federated learning with secure

aggregation. In International Conference on Machine Learning (pp. 5201-5212). PMLR. 92



Distributed-DP: what if users are malicious?

\

Secure
Aggregation g

Malicious user does
not apply no se

g @ . <«— Global model is not e —DP
-



Differential privacy’s trade-offs

Fundamental issue:

« By design, DP mechanisms partially destroy information
DP-models; utility:

o ~
Q

o

nn
nn

0.5
10

10° 5

MNIST 98.3% | 97% 95% 90%

CIFAR-10 || 80% 73% 67%

The promise:

* As long as there is enough data, the noise introduced by the DP mechanism “cancels out”. Only trends
that are relevant to many people are visible.

 What is enough data? Depends on the dimensionality.

« If good utility cannot be achieved, other approaches to privacy protections should be used, e.g., not
using a learning model at all.

What can go wrong?

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).



Differential privacy’'s disparate impact

The impact of DP on accuracy may differ across subgroups of the population

(b) DP model accuracy relative
to non-DP . Laishedween | @ True allocation
VS SU bgl‘OUp SiZe Andra)zr%g: I Private allocation _
4 T Sikki i
ancigarn = —
I 40 11 cn Migo['fwlat:p: ] [ ————— ]
Vo | pondichery 4 —
S5 | et 3 =
E5| 201 MCTE —— S
5% | LA 1 =
m I Isha :
0. 4= o® ,’ g Y ‘ L ] Tarmnil Nﬁgg - | ey )
<& % o o*° ® Matiaraetia ]
v [F] | ' J ® Haryana - =
— ') L] Meghalaya [ ]
v m | 1 [ ] Karnataka - :
L=l_201 - Delhi 4
= ® av, . Ulttar_ =
oo | s
D % | L] Jllm'léhanld 7 =
—401 e Accuracy on subgroup it 3 s
' | rtarcibans $ =
T T T T T T Assam = ® =
0 500 1000 1500 2000 2500 3000

.00 -0.75 -050 -025 000 025 050 075 1.00

Subgroup size Expected Deviation
Disparate imp_act of DP on a computer vision problem trained with Disparate impact of hypothetical Indian parliament seat
DP-SGD, epsilon = 6 apportionment if Census data had central Laplace
"Differential Privacy Has Disparate Impact on Model Accuracy"” "Fair Decision Making Using Privacy-Protected Data"

Eugene Bagdasaryan, Vitaly Shmatikov 2019 David Pujol et al. 2020



Differential Privacy’s disparate impact in FL

* Outliers are canceled out.
+ Outliers do not get any gain from the collaborative
training (the model achieves better utility if trained locally)

E.g., next word prediction task [Yu et al]:

*

[ R ]
Central Server

AcCCqp — ACClpcal (%)

0 20 40 60 80 100
ACCiocal (%)

98
Yu et al. Salvaging Federated Learning by Local Adaptation



Differential privacy Is not a silver bullet

DP does not stop property inference attacks (in instance-level DP)

Do we have more women or

ﬁen in Bob’s training set?

Every model updated
shared by usersis e — DP

Central Server

User performs
DP-SGD locally \

£3

99



Conclusion

« ML models leak information about the datasets they are trained on.
* Thus, if the training data is sensitive, the model is sensitive as well.
« |f the training data is sensitive, one must take actions to limit the leakage.

 If no formal protections are used (e.g., DP), sharing the trained model (or gradient) is
not different from sharing the raw data.

* Yet, formal protections come with heavy cost in performance, utility and bias.
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