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• “Machine learning (ML) and privacy” is an extremely active and dynamic line of 
research; fresh results every month!

o Historically, there has been a focus on predictive AI, i.e., classification models.

o More recently, the focus has shifted to generative AI: large language models (LLM), 
diffusion models...

• This lecture focuses on the fundamental concepts. You will learn how to:

o Think adversarially about ML in two widely used settings, centralized ML and federated ML.

o Train ML models in a privacy-preserving way.
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Objectives



Lecture overview

• What can we learn from machine learning models? (focus on deep learning)

• Centralized machine learning (50%)

• Collaborative machine learning (50%) 

• Learning on private data

• How can we responsibly use private data?
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Part I – Centralized ML
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• We want to train a model to infer a label 𝑌 given a feature vector 𝑋 for a distribution 
(𝑋, 𝑌) over 𝐷∗. E.g., infer a user’s pet given their social network profile.

o 𝐷∗ is the universe of possible samples. E.g., all social network profiles and the owners’ 
pets.

• A training dataset 𝐷 = { 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)} consists of 𝑛 samples of (𝑋, 𝑌). Each 
label denotes one of 𝐶 classes.

• At train time: We train a model on 𝐷.

• Test/inference time: We use the model to make predictions on new inputs 𝑥. 

Given 𝑥, we retrieve the model’s confidences on each class, 𝑀 𝑥 = ො𝑦1, ො𝑦2, … , ො𝑦𝐶 ,
σ𝑖 ො𝑦𝑖 = 1. These are the probabilities the model assigns to the event “𝑥 belongs to 
the 𝑖-th class”. We predict 𝑗 such that ො𝑦𝑗 = max

𝑖
ො𝑦𝑖.
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Useful ML background

Cat

Dog
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Fish

ො𝑦1 = 0.40

ො𝑦2 = 0.18

ො𝑦3 = 0.24

ො𝑦4 = 0.18



• By applying a training algorithm 𝑇 to the training dataset 𝐷: 𝑀 = 𝑇 𝐷, 𝑠𝑒𝑒𝑑 .

o Model architecture (e.g., neural network)

o Objective (loss) function.

• The model is specified by its architecture and trained parameters 𝜃 (also called 
weights): 𝑀 = 𝑀 𝜃

• Model predictions on inputs 𝑥: 𝑀 𝑥 = 𝑀(𝑥; 𝜃)
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How to get a model from the data?



Example: neural network classifier.
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Stochastic gradient descent (SGD)

Randomly initialize the weights 𝜃0 ← 𝑟𝑎𝑛𝑑𝑜𝑚.

For 𝑡 in {0,1,… , 𝑛 − 1}:
1. Sample batch from the training set:

𝑥1, 𝑦1 , … , 𝑥𝐵 , 𝑦𝐵 ∼ 𝐷
2. Compute model’s prediction (confidence score):

ෞ𝑦𝑏 = 𝑀 𝑥𝑏, 𝜃𝑡 , 𝑏 = 1,…𝐵
3. Compute the loss:

𝑙(𝜃𝑡) =
1

𝐵
෍

𝑏=1

𝐵

𝐿( ො𝑦𝑏, 𝑦𝑏)

4. Compute gradient:

gt = ∇𝜃𝑡𝑙

5. Update parameters:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂gt

Training process (mini-batch SGD):

𝐷: training dataset

𝑏: batch size

𝑀(𝜃): model parameterized by 𝜃
𝐿: loss function

𝜂: learning rate

𝑛: number of training steps

𝜃0 𝜃1

Source: https://www.ibm.com/think/topics/gradient-descent

https://www.ibm.com/think/topics/gradient-descent


Machine learning – Life cycle
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1. Task design: Define the objective of the model.

2. Data collection: Collect a dataset for training the model. 

3. Train the model: Fit a model to the dataset, by applying a training algorithm. 

4. Deploy: Make the model available to someone else (e.g., via APIs or weight sharing).



Machine learning – Life cycle
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1. Task design: Define the objective of the model.

2. Data collection: Collect a dataset for training the model. 

3. Train the model: Fit a model to the dataset, by applying a training algorithm. 

4. Deploy: Make the model available to someone else (e.g., via APIs or weight sharing).

This is where the privacy problems start!



Our main concern is the confidentiality of the training set. Why?

• Training data may be sensitive! 

• Training data is expensive to collect.
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Model

Training sample:

Deployment phase:

Model

Alice did 

what!?

Training phase:

Machine learning privacy concerns



An adversary can target information about:

1. Individuals who contributed to the training data

• Is a sample (person, image,…) in the training set? → Membership inference attack

• If so, what attributes does this sample has? → Attribute inference attack

• Can I extract training samples from the model 1? → Reconstruction/data 
extraction attack

2. The dataset as a whole

• What is the proportion of women that this model was trained on? → Property 
inference attack
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Objectives of privacy attacks

1Some models like Support Vector Machines or k-Nearest Neighbors encode (a subset of) their training samples. Recovering samples 

from these models is straightforward given access to the parameters. In this lecture, we focus on deep neural networks trained using 

SGD, where the problem is non-trivial.
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Threat model

Black-box attack

• The adversary can query the model 𝑀 on 

any valid input 𝑥 of their choice, to retrieve 

the model confidences1 for each class 

𝑀 𝑥 = ො𝑦1, ො𝑦2, … , ො𝑦𝐶 , σ𝑖 ො𝑦𝑖 = 1.

• Examples: Machine Learning as a Service 

(MLaaS) and models accessed through 

APIs.

White-box attack

• The adversary has access to the trained 

model’s parameters 𝜃, i.e., complete 

knowledge of how the model works.

• Examples: on-device releases and open-

source models. 

1Variants of the black-box threat model include only releasing the predicted label arg max𝑖 ො𝑦𝑖 and only releasing the top-k confidences.
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Training 

algorithm

Dataset of 

social network 

profiles

ML model

Machine Learning as a Service (MLaaS)

1. A company trains a 

model in the cloud.
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Training 

algorithm

Dataset of 

social network 

profiles

2. The company makes 

this model available as a 

service for users to query

ML model

Machine Learning as a Service (MLaaS)

1. A company trains a 

model in the cloud.
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Training 

algorithm

Dataset of 

social network 

profiles

Bob’s profile

FeaturesCat
3. The user makes a query: “Given 

Bob's profile (photos, posts, metadata), 

what pet does Bob have?”

2. The company makes 

this model available as a 

service for users to query

Cat

Dog

Horse

Fish

ML model

Machine Learning as a Service (MLaaS)

1. A company trains a 

model in the cloud.



Model sharing
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Training 

algorithm

Patient-level 

observations: 

age, region, 

comorbidities

1. A hospital trains a 

model to identify if a 

patient is at risk of 

COVID-19 complications 

based on their medical 

information.

2. The hospital shares this 

model (i.e., its weights) to 

third parties.

ML model



• Although we want models to learn general “rules” for making predictions, they are 
always trained on specific, finite datasets.

• Because of how they are trained, models behave differently when applied to a 
training sample compared to an unseen sample.

• Privacy attacks are about characterizing and exploiting1 this behavior to infer 
information about the training dataset.
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Training data privacy: General intuitions

1Or inducing them in the active security model.



Membership inference attack
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Formal definition of an MIA
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• An adversary has access to:

o A target model 𝑀𝑇 trained on a private dataset 𝐷 ⊂ 𝐷∗.

o A target record zT = (𝑥𝑇 , 𝑦𝑇), e.g., (𝐵𝑜𝑏’𝑠 𝑝𝑟𝑜𝑓𝑖𝑙𝑒, 𝑐𝑎𝑡).

• The adversary wants to know if 𝑀𝑇 was trained on 𝑥𝑇 , 𝑦𝑇 , i.e., whether 𝑥𝑇 , 𝑦𝑇 ∈ 𝐷.

• Member record: any 𝑥, 𝑦 ∈ 𝐷.

• Non-member record: any 𝑥, 𝑦 ∈ 𝐷∗ ∖ 𝐷.
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Bob’s profile

Features

Is Bob a member or not?

Black-box membership inference

Training 

algorithm

Dataset of 

social network 

profiles

ML model

Cat

Dog

Horse

Fish



Black-box membership inference: Intuition
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Ideally, we would like member and non-member samples to have the same confidence 

distribution:

Non-member

However, the reality is:

Bob’s profile

Features

Jill’s profile

Member

Cat

Dog

Horse

Fish

Cat

Dog

Horse

Fish

Features

Non-member

Bob’s profile

Features

Jill’s profile

Member

Features Cat

Dog

Horse

Fish

Dog

Cat

Horse

Fish



Overfitting
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How to construct an MIA

• We want to exploit that a model predicts the label of member records more confidently

than the label of non-member records.

• This amounts to learning to distinguish between two distributions: the model confidences 

for members vs non-members.



Option 1

• The attacker can train a classifier 𝐴 to distinguish between model confidences of 
member and non-members. 

• The attacker can apply this classifier to the target record to obtain the membership 
prediction 𝐴(𝑥, 𝑦)

• Strong adversary assumptions: 

• The adversary needs to know 𝐷𝑚𝑒𝑚𝑏𝑒𝑟 ⊂ 𝐷 and 𝐷𝑛𝑜𝑛𝑚𝑒𝑚𝑏𝑒𝑟 ⊂ 𝐷∗ ∖ 𝐷. This is needed to train 
the classifier on 𝑀𝑇(𝑧), 1 : 𝑧 = 𝑥, 𝑦 ∈ 𝐷𝑚𝑒𝑚𝑏𝑒𝑟 ∪ 𝑀𝑇(𝑧), 0 : 𝑧 = 𝑥, 𝑦 ∈ 𝐷𝑛𝑜𝑛𝑚𝑒𝑚𝑏𝑒𝑟 .

• The adversary can query the model 𝐷𝑚𝑒𝑚𝑏𝑒𝑟 + 𝐷𝑛𝑜𝑛𝑚𝑒𝑚𝑏𝑒𝑟 + 1 times.
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Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box 

inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



• Simulate the behavior of the model by training shadow models 

• The shadow models are trained using the same training algorithm 𝑇 but on different 
datasets which are controlled by the attacker.

• 𝑀1 = 𝑇 𝐷1, 𝑠𝑒𝑒𝑑1 , … ,𝑀𝑘 = 𝑇(𝐷𝐾 , 𝑠𝑒𝑒𝑑𝐾) with corresponding member/non-member datasets 
(𝐷1, 𝐷𝑎𝑑𝑣 ∖ 𝐷1), … , (𝐷𝐾 , 𝐷𝑎𝑑𝑣 ∖ 𝐷𝐾).

• The adversary then trains a classifier to distinguish between members and non-members 
based on confidence outputs of shadow models. 

• Weaker adversary assumptions:

• The adversary has a dataset 𝐷𝑎𝑑𝑣 different from the one used to train the target model
(typically, from the same distribution)

• The adversary can query the model once for a given target example 𝑥𝑇 to obtain 𝑦 = 𝑀𝑇 𝑥𝑇
• The adversary knows the training algorithm 𝑇

25

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against machine learning models. In 

2017 IEEE symposium on security and privacy (SP) (pp. 3-18). IEEE.

Option 2 – Shadow modeling technique



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow dataset 𝐷1



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow model 𝑀1

Shadow dataset 𝐷1



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow model 𝑀1

Shadow dataset 𝐷1

𝑀1’s confidences 

on samples in 𝐷1

𝑀1’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷1



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow model 𝑀1

Shadow dataset 𝐷1

𝑀1’s confidences 

on samples in 𝐷1

𝑀1’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷1

Shadow model 𝑀𝐾

Shadow dataset 𝐷𝐾

𝑀𝐾’s confidences 

on samples in 𝐷𝐾

𝑀𝐾’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷𝐾

…



Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow model 𝑀1

Shadow dataset 𝐷1

𝑀1’s confidences 

on samples in 𝐷1

𝑀1’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷1
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Shadow modeling idea: illustration
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Attacker-controlled dataset 

𝐷𝑎𝑑𝑣, e.g., Internet images

Shadow model 𝑀1

Shadow dataset 𝐷1

𝑀1’s confidences 

on samples in 𝐷1

𝑀1’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷1

Shadow model 𝑀𝐾

Shadow dataset 𝐷𝐾

𝑀𝐾’s confidences 

on samples in 𝐷𝐾

𝑀𝐾’s confidences on 

samples in 𝐷𝑎𝑑𝑣 ∖ 𝐷𝐾

…

Was Bob’s record 

used to train 𝑀𝑇?

Membership 

classifier



Option 3: Threshold attack

• A simple attack with interesting theoretical insights.

• Even weaker adversary assumptions:

• No knowledge of the training algorithm and no access to the data distribution

• The only knowledge about the target model:

• The loss function 𝐿(⋅,⋅) used to train the model.

• The average training loss 𝐿∗ =
1

𝑛
σ𝑖=1
𝑛 𝐿(𝑀𝑇 𝑥𝑖 , 𝑦𝑖)

• The adversary can query the model once for a given target example 𝑥𝑇 to obtain 𝑦 = 𝑀𝑇 𝑥𝑇

• How to attack in this setting?
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• Model confidences: Given 𝑥, the model’s confidences on each class is a vector

𝑀 𝑥 = ො𝑦1, ො𝑦2, … , ො𝑦𝐶 , σ𝑖 ො𝑦𝑖 = 1

• At train time, neural network’s weights on the cross-entropy loss: 

𝐿 𝑥, 𝑦 = −log ො𝑦𝑦

where ො𝑦𝑦 is the model’s confidence on 𝑥’s true class, 𝑦

34

Relationship between model confidences and 
loss function



Threshold attack

ThresholdAttack(𝑀, (𝑥, 𝑦), 𝐿∗, 𝐿(. )):

1. Query ො𝑦 = 𝑀(𝑥)

2. Compute loss at target example 𝐿 = 𝐿(ො𝑦, 𝑦)

3. Compare the target’s loss with average loss

if 𝐿 ≤ 𝐿∗: predict “member”, i.e., that (𝑥, 𝑦) was in the training dataset

else: predict “non-member”, i.e., that (𝑥, 𝑦) was not in the training dataset

35

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to 

overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE.



Estimating vulnerability with the threshold attack

Consider:

• A training dataset 𝐷 whose loss distribution is shown 

in blue

• A test dataset 𝐷′ whose loss distribution is shown in 

purple

The adversary knows

• The average loss on the training set is 𝐿∗ = 6
• Prior probability of a sample being a member is 0.5

How can we estimate the advantage (𝐴𝑑𝑣 =
𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) – 𝑃(𝑝𝑟𝑖𝑜𝑟)) of the threshold attack over 

random guessing on all examples from 𝐷 and 𝐷’? 40% of 𝐷′ 60% of 𝐷′

𝐿∗ = 6

36



Estimating vulnerability with the threshold attack

How can we estimate the advantage (𝐴𝑑𝑣 =
𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) – 𝑃(𝑝𝑟𝑖𝑜𝑟)) of the threshold attack over 

random guessing on all examples from 𝐷 and 𝐷’?

• 𝐴: adversary guess, 𝑀: membership of sample

• 𝑃 𝑝𝑟𝑖𝑜𝑟 = 𝑃 𝑀 = 1 = 0.5
• 𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑃 𝐴 = 𝑀

= 𝑃 𝐴 = 1,𝑀 = 1 + 𝑃(𝐴 = 0,𝑀 = 0)
= 𝑃 𝐴 = 1 𝑀 = 1 × 𝑃 𝑀 = 1 +

𝑃 𝐴 = 0 𝑀 = 0 × 𝑃(𝑀 = 0)
= 0.5 ∗ 0.5 + 0.6 ∗ 0.5 = 0.25 + 0.3 = 0.55.

• 𝐴𝑑𝑣 = 0.55 − 0.5 = 0.05
• 𝐴𝑑𝑣 can range between 0 and 0.5. We can multiply it 

by 2 to have it range between 0 and 1.
40% of 𝐷′ 60% of 𝐷′

𝐿∗ = 6

37
𝐴𝑑𝑣 = 2𝑃(𝐴 = 𝑀)– 1 = 𝑃(𝐴 = 1|𝑀 = 1) − 𝑃(𝐴 = 1|𝑀 = 0)

(adversary's TPR minus adversary's FPR)



Relationship to overfitting

Theorem (informal statement, Yeom et al., 2018): Assume the loss function is 
bounded by a constant 𝐵. For a sample (𝑥, 𝑦), the adversary who outputs 1 (member) 
with probability 𝐿(ො𝑦, 𝑦)/𝐵 and 0 otherwise has an advantage equal to 𝑅𝑔𝑒𝑛/𝐵.

Average generalization error of training algorithm 𝑇:

𝑅𝑔𝑒𝑛 𝑇, 𝑛, 𝐿 = 𝐸𝐷∼ 𝑋,𝑌 𝑛, 𝑥,𝑦 ∼ 𝑋,𝑌 [𝐿 𝑇 𝐷 𝑥 , 𝑦 ] - 𝐸𝐷∼ 𝑋,𝑌 𝑛, 𝑥,𝑦 ∼𝐷[𝐿 𝑇 𝐷 𝑥 , 𝑦 ]

38

Expected loss over samples 

(𝒙, 𝒚) of the distribution (𝑿, 𝒀)
Expected loss over samples 

(𝒙, 𝒚) of the training dataset 𝑫

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to 

overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE.



Lower bound on vulnerability

• Overfitting implies vulnerability to membership inference attacks.

• Practical estimation of the lower bound on vulnerability:

o The threshold attack is extremely simple and cheap: adversarial advantage 
is the difference between proportions of examples under loss threshold on 
training/test datasets.

o Surprisingly, it is also rather powerful in practice.

39



Is overfitting necessary to obtain good 
classifiers?

• Long-tailed data distribution: A distribution in 
which the frequencies of sub-populations are 
long-tailed, i.e., there are many sub-populations 
with small frequencies.

o A dataset sampled from a long-tailed distribution 
will have few samples available for every sub-
populations.

o Real-world examples: images, text,…

• Theorem [Feldman, 2019, informal statement]: 
To achieve optimal performance, a model trained 
on long-tailed data must memorize the labels of 
sub-population samples in the training dataset.

40
Feldman, V. (2020, June). Does learning require memorization? a short tale about a long tail. In Proceedings of the 52nd Annual 

ACM SIGACT Symposium on Theory of Computing (pp. 954-959).
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White-box shadow modeling attacks

activations of internal layers, 

gradients, weights…

+



Attribute inference attack

• Threat model

o The attacker knows the partial record of an individual Bob. I.e., if Bob’s 
record has 𝑛 attributes 𝑥1, … , 𝑥𝑛 and label 𝑦, the attacker knows 𝑥′ =
𝑥1, … , 𝑥𝑛−1, 𝑦 .

o The adversary’s goal is to infer the missing attribute 𝑥𝑛 given access to a 
target model trained on 𝑥, 𝑦 .
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Connection between attribute inference and 

membership inference
• Imagine an ML model that takes medical

information and returns a recommended
dosage of some medicine.

• Assume we have an AIA for inferring the “Has
disease” attribute. How can we use it to
construct an MIA?

• Use the AIA to query the model on Bob’s value for
“Has disease” given 𝑥′. If the attribute retrieved is
correct (i.e., the AIA returns “yes”), predict “member”.
Else, predict “non-member”.

• Yeom et al. showed this MIA to have the same
advantage as the AIA.

• A reduction exists in the opposite direction, but
the advantage of the MIA-based AIA is smaller
than the MIA’s.

Bob’s medical record

Features
Medicine 

dosage

45

ML model

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018, July). Privacy risk in machine learning: Analyzing the connection to overfitting. In 

2018 IEEE 31st computer security foundations symposium (CSF) (pp. 268-282). IEEE.

Sex Age Country Has disease

M 55 Belgium yes
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• The training process makes the model behave differently on training data.

• An attacker can exploit this behavior to infer information about the training data.

Summary



Defending against MIAs using differential 
privacy

• Differential privacy (DP) is a mathematical framework to reason rigorously 
about privacy.

• So far, you’ve studied DP in the context of statistical queries.

• The same ideas apply to ML algorithms, too!

o With some differences we’ll explore today

• Key intuition: The outputs of the training algorithm should not “change too 
much” regardless of the inclusion or exclusion of any one record

47
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Differential privacy
Definition (𝝐-Differential Privacy): Let ϵ > 0. A randomized mechanism T is said

to satisfy 𝜖-differential privacy (or to be 𝜖-DP) if for every pair of neighboring

datasets 𝐷,𝐷′ (i.e., differing in exactly one record) and for any subset of outputs 𝑌,

the following holds:

Pr 𝑇 𝐷 ∈ 𝑌 ≤ 𝑒𝜖Pr(𝑇 𝐷′ ∈ 𝑌)

where the randomness is taken over the coin flips of 𝑌.

Possible output values

P
ro

b
a
b
ili

ty
 d

is
tr

ib
u
ti
o
n

Ratio bounded by 𝑒𝜖 ≈ 1 + 𝜖

Average 

salary (D)

Average 

salary (D’)

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of

Cryptography: Third Theory of Cryptography Conference, TCC 2006.
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Achieving DP through noise addition

• Noise addition is one of the key ingredients of DP mechanisms.

• Global sensitivity of the mechanism Δ𝑇 = max
𝐷∼𝐷′

|𝑇 𝐷 − 𝑇(𝐷′)|

• The global sensitivity captures how much a single individual’s data can change the answer to the query in

the worst case, and therefore, the uncertainty in the response that we must introduce to hide anyone’s

participation.

• Theorem: Given a mechanism 𝑇, adding noise 𝐿𝑎𝑝 0,
Δ𝑇

𝜖
to a query ensures 𝜖-DP.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of

Cryptography: Third Theory of Cryptography Conference, TCC 2006.
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𝑋

𝑋′

Training 
algorithm

(𝑇)

Training 
algorithm

(𝑇)

Model 𝑇(𝑋)

Model 𝑇(𝑋′)

𝜖-similar
𝑃(𝑇 𝑋 = 𝑀)

𝑃(𝑇 𝑋′ = 𝑀)
= 𝑒𝜀 ≈ 1 + 𝜀

Differentially private ML



Differentially private ML
Loss minimisation

51

Training data

(𝑥, 𝑦)
Trained model

𝜃∗

ML training

Define objective function

𝜃∗ = argmin
𝜃

𝐿(𝑥, 𝑦; 𝜃)

Iterate for 𝑇 epochs

Calculate gradients

𝑔 = 𝛻𝜃𝐿(𝑥, 𝑦; 𝜃)
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗ + 𝛽

Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃 + 𝛽

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Gradient perturbation

Objective perturbation

Output perturbation

Differentially private ML
Techniques

ML training
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗ + 𝛽

Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃 + 𝛽

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Objective perturbation

Output perturbation

How much can a single training record affect each of these functions?

Differentially private ML
Techniques

ML training
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗ + 𝛽

Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃 + 𝛽

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Objective perturbation

We do not know how to calculate a bound on the sensitivity

Output perturbation

How much can a single training record affect each of these functions?

?

?

Differentially private ML
Techniques

ML training
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗ + 𝛽

Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃 + 𝛽

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Objective perturbation

Output perturbation

Gradient perturbation

Differentially private ML
Techniques

ML training



Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃

Iterate for 𝑇 epochs

Calculate gradients

𝑔 = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Differentially private ML
Differentially private stochastic gradient descent (DP-SGD)

56

Training data

(𝑥, 𝑦)
𝜖 − 𝐷𝑃 model 𝑓Θ

Gradient perturbation

𝑔′ = 𝑝𝜖(𝑔)

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential 

privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).

ML training



Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃

Iterate for 𝑇 epochs

Calculate gradients

𝑔 = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Differentially private ML
DP-SGD

57

Training data

(𝑥, 𝑦)

Gradient perturbation

𝑔′ = 𝑝𝜖(𝑔)

Gradient perturbation:

1. Gradient clipping (bound sensitivity):

𝑔𝐶 = 𝑔 ×𝑚𝑖𝑛(
𝐶

𝑔
2

, 1)

2.

3.

DP parameters:

𝐶 is the imposed sensitivity

𝜎 is a function of 𝜖
𝑁 is the isotropic gaussian dist.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential 

privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).

ML training



A bound to gradient sensitivity:

58

For every pair of neighbor batches:

𝑥𝑎

σ𝑥∈𝑥𝑎 ∇𝜃𝐿 𝑀𝜃 𝑥 , 𝑦 − σ𝑥∈𝑥𝑏 ∇𝜃𝐿 𝑀𝜃 𝑥 , 𝑦
2
≤ 𝐶

𝑥𝑏

• The gradient does not have a fixed range (i.e., it ranges between [−∞,+∞]).

• What we need is:



Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃

Iterate for 𝑇 epochs

Calculate gradients

𝑔 = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Differentially private ML
DP-SGD
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Training data

(𝑥, 𝑦)

Gradient perturbation

𝑔′ = 𝑝𝜖(𝑔)

Gradient perturbation:

1. Gradient clipping (bound sensitivity):

𝑔𝐶 = 𝑔 ×𝑚𝑖𝑛(
𝐶

𝑔
2

, 1)

2. Noise sampling based on sensitivity and 𝜖:
𝑑 = 𝑁(0, 𝜎2𝐶2)

3. Noise application:

𝑔′ = 𝑔𝐶 + 𝑑

DP parameters:

𝐶 is the imposed sensitivity

𝜎 is a function of 𝜖
𝑁 is the gaussian distribution

ML training



DP-SGD in details
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Input batch:

𝑥1

𝑥2

𝑥3

Per-instance gradient:

∇𝜃𝐿 𝑓𝜃 𝑥1 , 𝑦1

∇𝜃𝐿 𝑓𝜃 𝑥2 , 𝑦2

∇𝜃𝐿 𝑓𝜃 𝑥3 , 𝑦3

Clip:

c(… )

c(… )

c(… )

Σ

Sum: Apply noise:

+𝑁(0, 𝜎2𝐶2)

Scale by 
𝟏

𝟑



Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Differentially private ML
DP-SGD
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗

Gradient perturbation

Naïve composition: 

If each iteration is 𝜺 −DP

By composition, final model is 𝐓𝜺 − 𝑫𝑷

We end up consuming too much budget

ML training
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Training data

(𝑥, 𝑦)
Trained model

𝜃∗

Define objective function

𝜃∗ = argmin
𝜃

𝐿 𝑥, 𝑦; 𝜃

Iterate for 𝑇 epochs

Calculate gradients

𝑔′ = 𝛻𝜃𝐿 𝑥, 𝑦; 𝜃 + 𝛽
Update model

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝑔′

Gradient perturbation

Naïve composition: 

If each iteration is 𝜺 −DP

By composition, final model is 𝐓𝜺 − 𝑫𝑷

Advanced composition: 

If each iteration is 𝜺 −DP

By advanced composition, final model is 

(𝓞 𝑻𝜺 , 𝜹) − 𝑫𝑷

We end up consuming too much budget

We need to add less noise in each iteration 

to get the same total epsilon at the end

Differentially private ML
DP-SGD

ML training



Differentially private ML
Advanced composition

63

Advanced composition: 

If each iteration is 𝜺 −DP

By advanced composition, final model is 

(𝓞 𝑻𝜺 , 𝜹) − 𝑫𝑷

Naïve composition: 

If each iteration is 𝜺 −DP

By composition, final model is 

𝐓𝜺 − 𝑫𝑷

We “gain” a factor 𝑻
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Advanced composition: 

If each iteration is 𝜺 −DP

By advanced composition, final model is 

(𝓞 𝑻𝜺 , 𝜹) − 𝑫𝑷

Naïve composition: 

If each iteration is 𝜺 −DP

By composition, final model is 

𝐓𝜺 − 𝑫𝑷

We “gain” a factor 𝑻 At the cost of introducing a failure rate

What is the 𝜹 in 𝜀, 𝛿 − DP? 

Differentially private ML
Advanced composition
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Naïve composition: 𝜺 − 𝑫𝑷

𝑃[𝐴 𝐷 = 𝑂]

𝑃[𝐴 𝐷−𝑟 = 𝑂]

𝑂 = 25

Ratio of the two probabilities 

is bounded by e𝜀

For any neighbouring databases 𝐷,𝐷−𝑟 and 

any possible output 𝑂

𝑃 𝐴 𝐷 = 𝑂 ≤ 𝑒𝜖𝑃(𝐴 𝐷−𝑟 = 𝑂)

Differentially private ML
Advanced composition
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Advanced composition: (𝜺, 𝜹) − 𝑫𝑷Naïve composition: 𝜺 − 𝑫𝑷

𝑃[𝐴 𝐷 = 𝑂]

𝑃[𝐴 𝐷−𝑟 = 𝑂]

𝑂 = 25

Ratio of the two probabilities 

is bounded by e𝜀

For any neighbouring databases 𝐷,𝐷−𝑟 and 

any possible output 𝑂:

𝑃 𝐴 𝐷 = 𝑂 ≤ 𝑒𝜖𝑃(𝐴 𝐷−𝑟 = 𝑂)

For any neighbouring databases 𝐷,𝐷−𝑟 and any 

possible output 𝑂

𝑃 𝐴 𝐷 = 𝑂 ≤ 𝑒𝜖𝑃 𝐴 𝐷−𝑟 = 𝑂 + 𝜹

𝑃[𝐴 𝐷 = 𝑂] 𝑃[𝐴 𝐷−𝑟 = 𝑂]

𝑂 = 25

Ratio of the two probabilities is 

no longer strictly bounded by e𝜀

Differentially private ML
Advanced composition

𝑒𝜖𝑃[𝐴 𝐷−𝑟 = 𝑂]
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Advanced composition: (𝜺, 𝜹) − 𝑫𝑷Naïve composition: 𝜺 − 𝑫𝑷

𝑃[𝐴 𝐷 = 𝑂]

𝑃[𝐴 𝐷−𝑟 = 𝑂]

𝑂 = 25

Ratio of the two probabilities 

is bounded by e𝜀

For any neighbouring databases 𝐷,𝐷−𝑟 and 

any possible output 𝑂:

𝑃 𝐴 𝐷 = 𝑂 ≤ 𝑒𝜖𝑃(𝐴 𝐷−𝑟 = 𝑂)

For any neighbouring databases 𝐷,𝐷−𝑟 and any 

possible output 𝑂

𝑃 𝐴 𝐷 = 𝑂 ≤ 𝑒𝜖𝑃 𝐴 𝐷−𝑟 = 𝑂 + 𝜹

𝑃[𝐴 𝐷 = 𝑂] 𝑃[𝐴 𝐷−𝑟 = 𝑂]

𝑂 = 25

Gap between the two 

probabilities is bounded by 𝛿

Differentially private ML
Advanced composition

𝑒𝜖𝑃[𝐴 𝐷−𝑟 = 𝑂]



Upper bound on vulnerability

DP training provides a simple bound on vulnerability to membership inference.

With 𝜖 −DP training, the maximum advantage is bounded:

Why? Noise addition acts as a regularizer to reduce overfitting.

68

𝐴𝑑𝑣 ≤
𝑒𝜖 − 1

𝑒𝜖 + 1

Humphries, T., Oya, S., Tulloch, L., Rafuse, M., Goldberg, I., Hengartner, U., & Kerschbaum, F. (2023, July). Investigating membership 

inference attacks under data dependencies. In 2023 IEEE 36th Computer Security Foundations Symposium (CSF) (pp. 473-488). IEEE.
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Under advanced composition we add less noise.

This improves utility but can lead to more actual privacy leakage.

⇒ Privacy does not come for free

-- Model trained with (𝜺, 𝜹) − 𝑫𝑷

Measured as attack accuracy
Compare test accuracy to 

non-private model

-- Model trained with 𝜺 − 𝑫𝑷

Differentially private ML
Adversarial evaluation

Jayaraman, B., & Evans, D. (2019). Evaluating differentially private machine learning in practice. In 28th USENIX Security Symposium 

(USENIX Security 19) (pp. 1895-1912).



• Three ways to apply differential privacy to ML models

• Objective perturbation

• Output perturbation

• Gradient perturbation

• For complex learning tasks (deep learning), we cannot derive sensitivity bounds for 
the objective and output and have to use gradient perturbation

• Naïve (linear) composition is too punishing for iterative learning algorithms

• Advanced composition gives better budget consumption at the cost of introducing a 
failure rate

• Privacy does not come for free: Adding less noise improves accuracy but decreases 
protection against attacks

• *Differential privacy does not protect against property inference attacks

Differentially private ML

70



Part II - Collaborative Machine Learning (CML) 

71



Federated Learning (as example of CML)
Setup

72

Central server

Clients



Federated learning (FL)
Example: Federated SGD

73

New global model
+

𝜃t+1 = 𝜃𝑡 − 𝜂 × g

Model updates:

∇𝜃𝑡𝐿 𝑀𝜃𝑡
𝑥𝐴 , 𝑦𝐴

∇𝜃𝑡𝐿 𝑀𝜃𝑡
𝑥𝐵 , 𝑦𝐵

Central server

Alice:

Bob:

Model updates aggregation (gradient avg):

g =
1

2
[∇𝜃𝑡𝐿 𝑀𝜃𝑡

𝑥𝐴 , 𝑦𝐴 + ∇𝜃𝑡𝐿 𝑀𝜃𝑡
𝑥𝐵 , 𝑦𝐵 ]

𝜃𝑡

𝜃𝑡



Federated learning
Adversarial model

74

Central server Global model

Model updates

Clients

+

Training data considered sensitive

Adversarial Server, whose goal is to 

learn about the training datasets of clients.

Adversarial Client, whose goal is to learn about 

the training datasets of other clients.



New attack vectors in FL: adversarial server

7575

Central server

Bob

Alice

Bob’s Alice’s

• The server gets access to users’ 

individual model updates (i.e., gradient):

• The server can perform MIAs on the 

specific user (e.g., Alice) [Nasr SP19] 

• But, with the gradient, the server can do 

much worse: Gradient inversion 

attacks

∇𝜃𝑡𝐿 𝑀𝜃𝑡
𝑥𝐴 , 𝑦𝐴

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box inference 

attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.



Gradient inversion (honest-but-curious server):

76

∇𝜃𝐿 𝑀𝜃 , 𝑦

A second order optimization: The adversary optimizes the synthetic data until they 

obtain a gradient close to the one received from the client:

𝑎𝑟𝑔𝑚𝑖𝑛 ෤𝑥, ෤𝑦[𝑑 ∇𝜃𝐿 𝑦,𝑀𝜃 𝑥 , ∇𝜃𝐿 ෤𝑦,𝑀𝜃 ෤𝑥 ⋅ 𝑟𝑒𝑔( ෤𝑥)]

Gradient from the clientSynthetic data Domain specific regularizer

Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients. Advances in neural information processing systems, 32.



Gradient inversion in-the-wild:

77

Limitations:

• It really works only for small batch sizes and simple models.  

෤𝑥, ෤𝑦 ≈ 𝑥, 𝑦



Gradient inversion (malicious server ) 

7878

Central server

Bob

Alice

The server crafts adversarial parameters:

• ‘Trap weights’ that force the gradient 

produced by users to memorize input data:

Boenisch, F. et al. When the curious abandon honesty: Federated learning is not private. In 2023 Euro S&P.

Fowl, L. et al. Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models. In ICLR 2021.

M
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𝑦 = 𝑅𝑒𝐿𝑈 𝑊𝑥 + 𝑏 = max 0,𝑊𝑥 + 𝑏

If 𝑤𝑖
𝑇𝑥 + 𝑏𝑖 > 0, then for a batch size of 1 the 

following holds:



Gradient inversion with malicious server 

7979For more details: http://www.cleverhans.io/2022/04/17/fl-privacy.html

(Some) of the input instances can be perfectly recovered. ResNet-18, batch size 𝑛 =100: 

http://www.cleverhans.io/2022/04/17/fl-privacy.html


What about malicious clients ?

80

Central server

Bob

Alice

+ =

Malicious user crafts adversarial update 

and influences the global model

At the next iteration, Bob computes his 

model update on the model influenced 

by Alice.



The gradient ascent trick for MIAs

81

∇𝜃𝐿 𝑀𝜃 𝑥 , 𝑦

Honest execution:

Gradient descent: we change 𝜃 to minimize the loss for 𝑥

−∇𝜃𝐿 𝑀𝜃 𝑥 , 𝑦

Gradient ascent:  we change Θ to maximize the loss for 𝑥

Instead, the malicious user goes with:

MIA’s target instance

Alice:

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box 

inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.
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Results:

−∇𝜃𝑡𝐿 𝑦,𝑀𝜃𝑡 , ∇𝜃𝑡+1𝐿 𝑦,𝑀𝜃𝑡+1

Large gap

means membership 

Small/no gap 

means non-membership 

Alice: Bob:

Nasr, M., Shokri, R., & Houmansadr, A. (2019, May). Comprehensive privacy analysis of deep learning: Passive and active white-box 

inference attacks against centralized and federated learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 739-753). IEEE.

The gradient ascent trick for MIAs



Federated learning
Defenses

83

Central server

Global model

Model updates

Clients

+

Option 2: Differentially private learning

Option 1: Encrypt



Achieving DP in FL

84

Three main approaches with different assumptions and impacts:

1. Local differential privacy

2. Central (global) differential privacy 

3. Distributed differential privacy



Local differential privacy 

85

Threat model:

Malicious server

Malicious users

Weakest assumptions (no trust)

Worst utility loss

(instance-level privacy)

Central Server

Clients

Every model update

shared by users is 𝜖 − 𝐷𝑃

User performs 

DP-SGD locally



Central differential privacy 

86

Threat model:

Honest server

Malicious users

Strongest assumptions

Better utility loss

(compared to local DP)

(user-level privacy)

Central Server

Clients

Model updates are 

shared in plaintext. 

The server applies the DP-noise 

after the aggregation

Used in the real-world 

(gboard by google):



Instance-level vs user-level DP 

87

Instance-level: User-level:

Given the model, the attacker

cannot tell if an instance (e.g.,

an image) has been used for

training it.

Given the model, the attacker

cannot tell if a user participated in

the training.

implies



Instance-level
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Input batch:

𝑥1

𝑥2

𝑥3

Per-instance gradient:

∇𝜃𝐿 𝑀𝜃 𝑥1 , 𝑦1

∇𝜃𝐿 𝑀𝜃 𝑥2 , 𝑦2

∇𝜃𝐿 𝑀𝜃 𝑥3 , 𝑦3

Clip:

c(… )

c(… )

c(… )

Σ

Sum: Apply noise:

+𝑁(0, 𝜎2𝐶2)

Scale:
1

3



User-level

89

Input gradient:

Bob′s

Kevin′s

Clip:

c(… )

c(… )

c(… )

Σ

Sum: Apply noise:

+𝑁(0, 𝜎2𝐶2)

Scale:
1

3

Alice′s

∇𝜃(
1

𝐵
෍

𝑏=1

𝐵

𝐿(ො𝑦𝐵𝑜𝑏,𝑏, 𝑦𝐵𝑜𝑏,𝑏))

∇𝜃(
1

𝐵
෍

𝑏=1

𝐵

𝐿 ො𝑦𝐴𝑙𝑖𝑐𝑒,𝑏, 𝑦𝐴𝑙𝑖𝑐𝑒,𝑏 )

∇𝜃(
1

𝐵
෍

𝑏=1

𝐵

𝐿 ො𝑦𝐾𝑒𝑣𝑖𝑛,𝑏, 𝑦𝐾𝑒𝑣𝑖𝑛,𝑏 )



Local DP (as instance-level DP) assumptions
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Instances in the batch should not be 

correlated:
• If every instance in the batch is about Bob.

• Instance-level DP does not protect Bob’s identity.

Parameter Server:

𝑀𝜃 𝑀𝜃 ∇𝜃 𝑀𝜃 𝑥 , 𝑦 + 𝑛𝑜𝑖𝑠𝑒∇𝜃𝐿 𝑀𝜃 𝑥 , 𝑦 + 𝑛𝑜𝑖𝑠𝑒Alice: Bob:



Summing up
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Instance-level DP (as local DP):

• Less trust: No trusted curator

• Additional assumptions: intra-batch data is not correlated

• Worse trade-off privacy/utility

User level-DP (as global DP):

• More trust: A trusted curator

• No assumptions on intra-batch data

• Better trade-off privacy / utility



Distributed Differential privacy
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Central Server

Every user applies only 

a fraction of the noise 

Secure

Aggregation

But only the sum is 

revealed to the server
Threat model:

Malicious* server

Honest-but-curious users

Reasonable assumptions

Almost equivalent to central-DP

(user-level privacy)

Kairouz, P., Liu, Z., & Steinke, T. (2021, July). The distributed discrete gaussian mechanism for federated learning with secure 

aggregation. In International Conference on Machine Learning (pp. 5201-5212). PMLR.



Distributed-DP: what if users are malicious?

94

Central Server

Malicious user does 

not apply noise 

Secure

Aggregation

Global model is not 𝝐 −DP



Differential privacy’s trade-offs

Fundamental issue:

• By design, DP mechanisms partially destroy information

The promise:

• As long as there is enough data, the noise introduced by the DP mechanism “cancels out”. Only trends 
that are relevant to many people are visible.

• What is enough data? Depends on the dimensionality.

• If good utility cannot be achieved, other approaches to privacy protections should be used, e.g., not 
using a learning model at all.

What can go wrong?

DP-models; utility:

96
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October). Deep learning with differential 

privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security (pp. 308-318).



Differential privacy’s disparate impact

The impact of DP on accuracy may differ across subgroups of the population

Disparate impact of DP on a computer vision problem trained with 

DP-SGD, epsilon ≈ 6
"Differential Privacy Has Disparate Impact on Model Accuracy"

Eugene Bagdasaryan, Vitaly Shmatikov 2019

Disparate impact of hypothetical Indian parliament seat 

apportionment if Census data had central Laplace 
"Fair Decision Making Using Privacy-Protected Data"

David Pujol et al. 2020
97



Differential Privacy’s disparate impact in FL
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Central Server

• Outliers are canceled out. 

• Outliers do not get any gain from the collaborative 

training (the model achieves better utility if trained locally)

E.g., next word prediction task [Yu et al]:

Yu et al. Salvaging Federated Learning by Local Adaptation



Differential privacy is not a silver bullet

DP does not stop property inference attacks (in instance-level DP)

Central Server

Every model updated 

shared by users is 𝜖 − 𝐷𝑃

User performs 

DP-SGD locally

Do we have more women or 

men in Bob’s training set? 

99

Bob



Conclusion
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• ML models leak information about the datasets they are trained on. 

• Thus, if the training data is sensitive, the model is sensitive as well.

• If the training data is sensitive, one must take actions to limit the leakage.

• If no formal protections are used (e.g., DP), sharing the trained model (or gradient) is 

not different from sharing the raw data.

• Yet, formal protections come with heavy cost in performance, utility and bias.
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